MATH1520 University Mathematics for Applications

Chapter 12: Probability

Learning Objectives:

(1) Define outcome, sample space, random variable, and other basic concepts of probability.

(2) Define and examine continuous probability density functions.

- (3) Compute and use expected value.
- (4) Interpret variance and standard deviation.

1 Basic Concepts of Probability

Some probability examples we learned before:

Example 1.1.

- Roll a dice.
- Probability of rolling a "two" = $\frac{1}{6}$
- Toss a coin

Probability of getting a tail =
$$\frac{1}{2}$$
.

Our goal:

- Make things formal
- Change the setting from discrete to continuous.

Definition 1.1. For a random experiment:

- 1. **Possible outcome** : possible result of a single experiment.
- 2. Sample space: collection of all possible outcomes
- 3. Event: any collection of possible outcomes.
- 4. **Probability of an event**: a number between 0 and 1 which describes the possibility that the event occurs.

Example 1.2. Roll a dice once and record the score on the top face.

- 1. Sample space: $S = \{1, 2, 3, 4, 5, 6\}$ equally likely for each outcome.
- **2.** Events: \emptyset , {1},..., {1,2}, ..., {1,2,3}, ..., {1,2,3,4,5,6}.
- 3. $P(\emptyset) = 0$: probability of getting "nothing" is 0, impossible!
 - Let event A be "getting a 3", then $A = \{3\}$, $P(A) = \frac{1}{6}$.
 - Let event B be "getting a score ≤ 3 ", then $B = \{1, 2, 3\}$, $P(B) = \frac{3}{6} = \frac{1}{2}$.
 - Let event C be "getting a score ≥ 1 ", then $C = \{1, 2, 3, 4, 5, 6\}$, P(C) = 1. certain!

Exercise 1.1. A family has 3 children. Denote a boy by B, a girl by G. Write down the sample space and find the probability for the event "at most 1 girl".

2 Discrete Random Variable

Definition 2.1. For a random experiment with sample space S, a **random variable** X is a function that assigns a real number to each possible outcome in S, i.e.

$$X:S\to \mathbb{R}.$$

If image of X is finite or countably infinite, X is called a discrete random variable. Otherwise, if image of X is an interval, X is called a continuous random variable.

Example 2.1. Toss a coin 3 times.

 $S = \{HHH, HHT, HTH, THH, HTT, THT, TTH, TTT\}$

Let X be the number of times a head comes out.

Image of $X = \{0, 1, 2, 3\}$, discrete random variable

 $X(HHH) = 3, \quad X(HHT) = 2 = X(HTH), \dots$

Example 2.2. Toss a coin until a head comes out.

$$S = \{H, TH, TTH, TTTH, TTTTH, \ldots\}$$

Let X be the number of trials.

$$X(H) = 1, X(TH) = 2, X(TTH) = 3, \dots$$

Image of X is $\{1, 2, 3, ...\}$ which is countably infinite, so X is discrete.

Example 2.3. Suppose AB is a rope of length 10cm and AB is cut into two pieces *AC*, *CB* randomly.

Let X be the length of AC.

Image of X is (0, 100): an open interval from 0 to 100, so X is a continuous random variable.

2.1 Probability Distribution of Discrete Random Variable

Let *S* be a sample space, *X* be a discrete random variable with image $\{x_1, x_2, \ldots\}$.

For each value x_i , define

$$p(x_i) = P(X = x_i) =$$
probability of the event $X = x_i$

 $\{p(x_i), i = 1, 2, ...\}$ is called probability distribution of *X*.

Theorem 1. A probability distribution (or probability density function *short* form: *pdf*) $\{p(x_i), i = 1, 2, ...\}$ for X satisfies:

1. $0 \le p(x_i) \le 1, i = 1, 2, ...$ 2. $\sum_i p(x_i) = 1$

Example 2.4. Toss a coin 3 times.

$$S = \{HHH, HHT, HTH, THH, HTT, THT, TTH, TTT\}.$$

Let X be the number of times a head comes out. Then

$$p(0) = P(X = 0) = \frac{1}{8}$$
$$p(1) = P(X = 1) = \frac{3}{8}$$
$$p(2) = P(X = 2) = \frac{3}{8}$$
$$p(3) = P(X = 3) = \frac{1}{8}$$

x_i	0	1	2	3
$p(x_i)$	1/8	3/8	3/8	1/8

Note

$$p(1) + p(2) + p(3) = 1$$

$$P(1 \le X \le 2) = P(X = 1) + P(X = 2) = p(1) + p(2) = \frac{6}{8} = \frac{3}{4}$$

Example 2.5. Toss a coin until a head comes out.

$$S = \{H, TH, TTH, TTTH, \ldots\}$$

Let X be the number of trials.

$$p(1) = P(X = 1) = \frac{1}{2}$$

$$p(2) = P(X = 2) = \frac{1}{4}$$

$$p(3) = P(X = 3) = \frac{1}{8}$$

$$p(4) = P(X = 4) = \frac{1}{16}$$

$$\vdots$$

Generally

$$p(x) = \begin{cases} \frac{1}{2^x} & \text{ if } x \text{ is a nonnegative integer} \\ 0 & \text{ otherwise} \end{cases}$$

Again

$$\sum_{\substack{x:p(x)\neq 0}} = p(1) + p(2) + p(3) + \cdots$$
$$= \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{16} + \cdots$$
$$= \frac{1}{2} \times \frac{1}{1 - \frac{1}{2}} = 1.$$

Here we use the formula

$$\frac{1}{1-x} = 1 + x + x^2 + x^3 + \cdots$$

for |x| < 1.

2.2 Expected Value and Variance of a Discrete Random Variable

Example 2.6. Compare two shooting player whose performance are recorded as follows:

score
$$x_i$$
 8
 9
 10
 score x_i
 8
 9
 10

 probability $p(x_i)$
 0.3
 0.1
 0.6
 probability $p(x_i)$
 0.2
 0.5
 0.3

 player A
 player B

Whose performance is better?

Idea: compare the weighted average $\sum_{i} x_i p(x_i)$. (values with higher probability have larger distribution!)

Player A: $8 \times 0.3 + 9 \times 0.1 + 10 \times 0.6 = 9.3$ Player B: $8 \times 0.2 + 9 \times 0.5 + 10 \times 0.3 = 9.1$

Since 9.3 > 9.1, player A is better!

Definition 2.2 (Expected value E(X)). Let X be a discrete random variable with probability distribution $\{p(x_i), i = 1, 2, ...\}$. The expected value of X, denoted by E(X) is given by

$$E(X) = \sum_{i} x_i p(x_i).$$

We also call it mean and denoted by μ .

Example 2.7. Expected value reflects the long-run average of repetitions of experiments.

In Example 2.6, let Player A shoot N times, (N is sufficiently large),

So the total score is roughly :

$$\begin{array}{rcl}
0.3N & \text{times} & 8\\
0.1N & \text{times} & 9\\
0.6N & \text{times} & 10\\
\end{array}$$

$$\Rightarrow \text{ the long-run average is } \frac{8 \times 0.3N + 9 \times 0.1N + 10 \times 0.6N}{N} = 9.3 = E(X).\end{array}$$

Example 2.8. Roll a dice.

Let X be the random variable that denotes the number facing up.

1	2	3	4	5	6
$\frac{1}{c}$	$\frac{1}{c}$	$\frac{1}{c}$	$\frac{1}{c}$	$\frac{1}{c}$	$\frac{1}{c}$
	$\frac{1}{6}$	$ \begin{array}{ccc} 1 & 2 \\ \frac{1}{6} & \frac{1}{6} \end{array} $	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

$$E(x) = \sum_{i} x_{i} p(x_{i})$$

= 1 \cdot p(1) + 2 \cdot p(2) + \cdots + 6 \cdot p(6)
= $\frac{1}{6} + \frac{2}{6} + \frac{3}{6} + \frac{4}{6} + \frac{5}{6} + \frac{6}{6}$
= 3.5

Definition 2.3 (Variance Var(X) **and Standard Deviation** σ **).** Let *X* be a discrete random variable with probability distribution { $p(x_i), i = 1, 2, ...$ }. Then the variance of *X*, is

$$\operatorname{Var}(X) = \sum_{i} (x_i - \mu)^2 p(x_i),$$

where μ is the mean (expected value) of X.

Standard deviation is defined as

$$\sigma = \sqrt{\operatorname{Var} X}.$$

Remark. Var(X) measures how far the value of X spread out of the mean E(X).

In example 2.8, the variance is

$$\begin{aligned} \operatorname{Var}(X) &= \sum_{i} (x_{i} - \mu)^{2} p(x_{i}) \\ &= \frac{(1 - 3.5)^{2}}{6} + \frac{(2 - 3.5)^{2}}{6} + \frac{(3 - 3.5)^{2}}{6} + \frac{(4 - 3.5)^{2}}{6} + \frac{(5 - 3.5)^{2}}{6} + \frac{(6 - 3.5)^{2}}{6} \\ &= \frac{35}{12} \\ \sigma &= \sqrt{\frac{35}{12}} \end{aligned}$$

Theorem 2. Let X be a discrete random variable with probability distribution $\{p(x_i), i = 1, 2, ...\}$, then

$$Var(X) = E(X^2) - (E(X))^2.$$

Proof.

$$Var(X) = \sum_{i} (x_{i} - \mu)^{2} p(x_{i})$$

= $\sum_{i} (x_{i}^{2} - 2x_{i}\mu + \mu^{2}) p(x_{i})$
= $\sum_{i} x_{i}^{2} p(x_{i}) - 2\mu \sum_{i} x_{i} p(x_{i}) + \mu^{2} \sum_{i} p(x_{i})$
= $\sum_{i} x_{i}^{2} p(x_{i}) - \mu^{2}$
= $E(X^{2}) - (E(X))^{2}$

In Example 2.6,

For Player A:
$$Var(X) = (8 - 9.3)^2 \times 0.3 + (9 - 9.3)^2 \times 0.1 + (10 - 9.3)^2 \times 0.6 = 0.81$$

or: $Var(X) = 8^2 \times 0.3 + 9^2 \times 0.1 + 10^2 \times 0.6 - (9.3)^2 = 0.81$

3 Continuous Random variable

Example 3.1. A certain traffic light remains red for 50 seconds every time. Andy arrives (at random) at the light and finds it red. Let X be the random variable denote the waiting time of Andy.

Image of X : [0, 50], continuous random variable

1. probability that Andy has to wait for **at most** 10 seconds:

$$P(0 \le X \le 10) = \frac{\text{length of } [0, 10]}{\text{length of } [0, 50]} = \frac{10}{50} = \frac{1}{5}.$$

2. probability that Andy has to wait between 20 seconds and 40 seconds:

$$P(20 \le X \le 40) = \frac{\text{length of } [20, 40]}{\text{length of } [0, 50]} = \frac{20}{50} = \frac{2}{5}.$$

Definition 3.1. Let X be a continuous random variable. A probability distribution (or probability density function short form: pdf) is a function f such that

1. $f(x) \ge 0$ 2. $\int_{-\infty}^{+\infty} f(x)dx = 1.$

Under this distribution, we have

$$P(a \le X \le b) = \int_{a}^{b} f(x) dx.$$

Definition 3.2. Let f(x) be a probability density function. The cumulative distribution function (short form: cdf) is

$$F(x) = P(X \le x) = \int_{-\infty}^{x} f(t)dt.$$

Theorem 3 (Properties of F(x), f(x)).

1.
$$\begin{cases} f(x) \ge 0\\ \int_{-\infty}^{+\infty} f(x) \, dx = 1 \end{cases}$$

2.
$$\begin{cases} F(x) \text{ is non-decreasing,} \quad 0 \le F(x) \le 1\\ \lim_{x \to -\infty} F(x) = 0, \quad \lim_{x \to +\infty} F(x) = 1. \end{cases}$$

3.
$$P(a \le X \le b) = \int_{a}^{b} f(x) \, dx,$$
$$P(X \le a) = \int_{-\infty}^{a} f(x) \, dx,$$
$$P(X \ge b) = \int_{b}^{+\infty} f(x) \, dx$$
$$P(X = a) = 0$$

4.
$$\begin{cases} F(x) = \int_{-\infty}^{x} f(t) dt \\ f(x) = F'(x), & \text{except at discontinuity points of } f(x) \end{cases}$$

Example 3.2. Uniform Distribution

In Example 3.1,

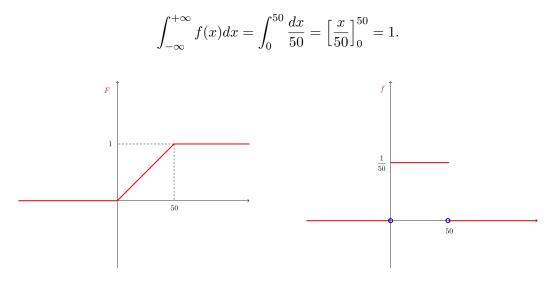
For
$$x \in [0, 50]$$
, $P(X \le x) = \frac{x}{50}$.

Let's extend the image from [0, 50] to \mathbb{R} , define

$$F(x) = P(X \le x) = \begin{cases} 0, & x < 0, \\ \frac{x}{50}, & 0 \le x \le 50, \\ 1, & x > 50. \end{cases}$$
 cumulative distribution function

$$f(x) = \begin{cases} \frac{1}{50}, & 0 \le x \le 50, \\ 0, & \text{otherwise.} \end{cases}$$

Check that it is a probability distribution:



$$F(x) = \int_{-\infty}^{x} f(t) dt$$

$$f(x) = F'(x) \quad (\text{ except at } x = 0, 50, \text{ but it does not matter!})$$

Example 3.3. Let

$$f(x) = \begin{cases} Ce^{-x}, & x \ge 0, \\ 0, & x < 0. \end{cases}$$

be a probability density function.

Find *C*, F(x), $P(-1 \le x \le 2)$.

Solution. We should have $\int_{-\infty}^{+\infty} f(x) \, dx = 1$. Therefore,

$$1 = \int_0^{+\infty} Ce^{-x} dx$$
$$= \lim_{b \to +\infty} \int_0^b Ce^{-x} dx$$
$$= \lim_{b \to +\infty} C(1 - e^{-b})$$
$$= C$$

$$F(x) = \int_{-\infty}^{x} f(t) dt$$

=
$$\begin{cases} \text{if } x < 0, & \int_{-\infty}^{x} 0 dt = 0. \\ \text{if } x \ge 0, & \int_{0}^{x} e^{-t} dt = 1 - e^{-x}. \end{cases}$$

$$P(-1 \le X \le 2) = \int_{-1}^{2} f(x) \, dx = \int_{0}^{2} e^{-x} \, dx = 1 - e^{-2}.$$

or

$$P(-1 \le X \le 2) = F(2) - F(-1) = 1 - e^{-2} - 0 = 1 - e^{-2}.$$

Let G(x) be an antiderivative of f(t). Then

$$\int_{a}^{x} f(t)dt = G(x) - G(a).$$

So

$$\frac{d}{dx}(G(x) - G(a)) = G'(x) = f(x).$$

Thus

$$F(x) = \int_{-\infty}^{x} f(t)dt$$

is an antiderivative of f(x), i.e.

$$f(x) = F'(x).$$

Example 3.4. Let

$$F(x) = \begin{cases} \frac{x}{x+1} & x \ge 0, \\ 0 & x < 0 \end{cases}$$

be a cumulative distribution function. Find the density distribution function.

Solution. The density distribution function is

For x > 0,

$$F'(x) = \frac{d}{dx}\frac{x}{x+1} = \frac{1}{(1+x)^2}.$$

For x < 0

$$F'(x) = 0$$

Thus the density distribution function is

$$f(x) = F'(x) = \begin{cases} \frac{1}{(1+x)^2} & x \ge 0, \\ 0 & x < 0. \end{cases}$$

3.1 Expected	Value and	Variance
--------------	-----------	----------

Recall for discrete random variable, the expected value of X is

$$E(X) = \sum_{i} x_i p(x_i)$$

Now for a continuous random variable X. Let f(x) be the probability distribution.

$$P(x_{i-1} \le X \le x_i) \approx f(x_i) \Delta x_i,$$

where $\Delta x_i = x_i - x_{i-1}$. Then

$$E(X) \approx \sum \text{value} \times \text{probability} = \sum_{i=1}^{n} x_i f(x_i) \Delta x_i$$

This is the Riemann sum, let $\Delta x_i \rightarrow 0$, we have

$$E(X) = \int_{-\infty}^{+\infty} x f(x) dx.$$

Similarly

$$\operatorname{Var}(X) \approx \sum_{i=1}^{n} (x_i - \mu)^2 f(x_i) \Delta x_i.$$

Let $\Delta x_i \to 0$,

$$Var(X) = E((X - \mu)^2) = \int_{-\infty}^{+\infty} (x - \mu)^2 f(x).$$

Definition 3.3. Let *X* be a continuous random variable with density function f(x)

Expected value (mean):	$E(X) = \int_{-\infty}^{+\infty} x f(x) dx$
Variance:	$\operatorname{Var}(X) = \int_{-\infty}^{+\infty} (x - \mu)^2 f(x) dx$
Standard deviation:	$\sigma = \sqrt{\operatorname{Var}(X)}$

Theorem 4. Let X be a continuous random variable with probability density function f(x), then

$$Var(X) = E(X^2) - (E(X))^2.$$

Example 3.5. Uniform Distribution Let

$$f(x) = \begin{cases} \frac{1}{b-a} & \text{if } a \le x \le b\\ 0 & \text{otherwise.} \end{cases}$$

$$\mu = E(X) = \int_{-\infty}^{+\infty} x f(x) dx$$
$$= \int_{a}^{b} \frac{x}{b-a} dx$$
$$= \frac{a+b}{2}$$

$$Var(X) = \int_{-\infty}^{+\infty} (x - \mu)^2 f(x) \, dx$$
$$= \int_a^b (x - \frac{a+b}{2})^2 \frac{1}{b-a} \, dx$$
$$= \frac{(b-a)^2}{12}$$

or

$$E(X^2) = \int_{-\infty}^{+\infty} x^2 f(x) dx$$
$$= \int_a^b \frac{x^2}{b-a} dx$$
$$= \left[\frac{x^3}{3(b-a)}\right]_a^b$$
$$= \frac{b^3 - a^3}{3(b-a)} = \frac{a^2 + ab + b^2}{3}$$

$$Var(X) = E(X^{2}) - E(X)^{2} = \frac{a^{2} + ab + b^{2}}{3} - \left(\frac{a+b}{2}\right)^{2}$$
$$= \frac{a^{2} - 2ab + b^{2}}{12} = \frac{(a-b)^{2}}{12}.$$
$$\sigma = \sqrt{Var(X)} = \frac{b-a}{2\sqrt{3}}.$$

Example 3.6. Exponential Distribution Let

$$f(x) = \begin{cases} \lambda e^{-\lambda x} & \text{if } x \ge 0\\ 0 & \text{if } x < 0 \end{cases}$$

with $\lambda > 0$.

Solution.

$$\begin{split} E(X) &= \int_{-\infty}^{+\infty} x f(x) dx = \int_{0}^{+\infty} \lambda x e^{-\lambda x} dx \\ &= \lim_{b \to +\infty} \int_{0}^{b} x d(-e^{\lambda x}) = \lim_{b \to +\infty} \left\{ \left[-x e^{-\lambda x} \right]_{0}^{b} + \int_{0}^{b} e^{-\lambda x} dx \right\} \\ &= \lim_{b \to +\infty} \int_{0}^{b} e^{-\lambda x} dx = \lim_{b \to +\infty} \left\{ \left[-\frac{1}{\lambda} e^{-\lambda x} \right]_{0}^{b} \right\} \\ &= \frac{1}{\lambda} \end{split}$$

$$\begin{split} E(X^2) &= \int_{-\infty}^{+\infty} x^2 f(x) dx = \int_0^{+\infty} \lambda x^2 e^{-\lambda x} dx \\ &= \lim_{b \to +\infty} \int_0^b x^2 d(-e^{\lambda x}) = \lim_{b \to +\infty} \left\{ \left[-x^2 e^{-\lambda x} \right]_0^b + \int_0^b 2x e^{-\lambda x} dx \right\} \\ &= \lim_{b \to +\infty} \int_0^b 2x d(-\frac{e^{-\lambda x}}{\lambda}) = \lim_{b \to +\infty} \left\{ \left[-\frac{2x e^{-\lambda x}}{\lambda} \right]_0^b + \int_0^b \frac{2e^{-\lambda x}}{\lambda} dx \right\} \\ &= \lim_{b \to +\infty} \left[-\frac{2e^{-\lambda x}}{\lambda^2} \right]_0^b = \frac{2}{\lambda^2} \\ &\operatorname{Var}(X) = E(X^2) - E(X)^2 = \frac{2}{\lambda^2} - \frac{1}{\lambda^2} = \frac{1}{\lambda^2}. \end{split}$$

So

$$f(t) = \begin{cases} 0.5e^{-0.5t} & \text{ if } t \ge 0\\ 0 & \text{ if } t < 0 \end{cases}$$

where t denotes the duration (in minutes) of a randomly selected call.

- 1. Find the probability that a randomly selected call last no more than 1 minute.
- 2. Find the probability that a randomly selected call last at least 2 minutes.

Solution. 1.

$$P(0 \le X \le 1) = \int_0^1 f(t)dt = \int_0^1 0.5e^{-0.5t}dt$$
$$= \left[-e^{-0.5t}\right]_0^1 = 1 - e^{-0.5} \approx 0.3935$$

2.

$$P(X \ge 2) = \int_{2}^{+\infty} f(t)dt = \lim_{b \to +\infty} \int_{2}^{b} 0.5e^{-0.5t}dt$$
$$= \lim_{b \to +\infty} \left[-e^{-0.5t}\right]_{2}^{b} = \lim_{b \to +\infty} (e^{-1} - e^{-0.5b})$$
$$= e^{-1} \approx 0.3679$$

Remark

- 1. $P(X \ge 2) = P(X > 2)$. (Why?)
- 2. How to obtain the probability distribution? Even if we conduct a survey to collect all data, we have only finitely many calls (though is a big number) then the sample space $S = \text{set of all calls. } X : S \to \mathbf{R}$ is a random variable that denotes the duration. The image of S is still finite. But it can be approximated by the X in the question.